metrics module
This section contains the Python API reference for the uncertainty_toolbox.metrics
module, which contains the main API for uncertainty metrics.
uncertainty_toolbox.metrics Module
Metrics for assessing the quality of predictive uncertainty quantification.
- uncertainty_toolbox.metrics.get_all_accuracy_metrics(y_pred, y_true, verbose=True)
Compute all accuracy metrics.
- Parameters
y_pred (
ndarray
) – 1D array of the predicted means for the held out dataset.y_true (
ndarray
) – 1D array of the true labels in the held out dataset.verbose (
bool
) – Activate verbose mode.
- Return type
Dict
[str
,float
]- Returns
The evaluations for all accuracy related metrics.
- uncertainty_toolbox.metrics.get_all_adversarial_group_calibration(y_pred, y_std, y_true, num_bins, verbose=True)
Compute all metrics for adversarial group calibration.
- Parameters
y_pred (
ndarray
) – 1D array of the predicted means for the held out dataset.y_std (
ndarray
) – 1D array of he predicted standard deviations for the held out dataset.y_true (
ndarray
) – 1D array of the true labels in the held out dataset.num_bins (
int
) – The number of bins to use for discretization in some metrics.verbose (
bool
) – Activate verbose mode.
- Return type
Dict
[str
,Dict
[str
,ndarray
]]- Returns
The evaluations for all metrics relating to adversarial group calibration. Each inner dictionary contains the size of each group and the metrics computed for each group.
- uncertainty_toolbox.metrics.get_all_average_calibration(y_pred, y_std, y_true, num_bins, verbose=True)
Compute all metrics for average calibration.
- Parameters
y_pred (
ndarray
) – 1D array of the predicted means for the held out dataset.y_std (
ndarray
) – 1D array of he predicted standard deviations for the held out dataset.y_true (
ndarray
) – 1D array of the true labels in the held out dataset.num_bins (
int
) – The number of bins to use for discretization in some metrics.verbose (
bool
) – Activate verbose mode.
- Return type
Dict
[str
,float
]- Returns
The evaluations for all metrics relating to average calibration.
- uncertainty_toolbox.metrics.get_all_metrics(y_pred, y_std, y_true, num_bins=100, resolution=99, scaled=True, verbose=True)
Compute all metrics.
- Parameters
y_pred (
ndarray
) – 1D array of the predicted means for the held out dataset.y_std (
ndarray
) – 1D array of he predicted standard deviations for the held out dataset.y_true (
ndarray
) – 1D array of the true labels in the held out dataset.num_bins (
int
) – The number of bins to use for discretization in some metrics.resolution (
int
) – The number of quantiles to use for computation.scaled (
bool
) – Whether to scale the score by size of held out set.verbose (
bool
) – Activate verbose mode.
- Return type
Dict
[str
,Any
]- Returns
Dictionary containing all metrics.
- uncertainty_toolbox.metrics.get_all_scoring_rule_metrics(y_pred, y_std, y_true, resolution, scaled, verbose=True)
Compute all scoring rule metrics
- Parameters
y_pred (
ndarray
) – 1D array of the predicted means for the held out dataset.y_std (
ndarray
) – 1D array of he predicted standard deviations for the held out dataset.y_true (
ndarray
) – 1D array of the true labels in the held out dataset.resolution (
int
) – The number of quantiles to use for computation.scaled (
bool
) – Whether to scale the score by size of held out set.verbose (
bool
) – Activate verbose mode.
- Return type
Dict
[str
,float
]- Returns
The computed scoring rule metrics.
- uncertainty_toolbox.metrics.get_all_sharpness_metrics(y_std, verbose=True)
Compute all sharpness metrics
- Parameters
y_std (
ndarray
) – 1D array of he predicted standard deviations for the held out dataset.verbose (
bool
) – Activate verbose mode.
- Return type
Dict
[str
,float
]- Returns
The evaluations for all sharpness metrics.